turkmath.org

Türkiye'deki Matematiksel Etkinlikler


26 Aralık 2018, 13:30


Boğaziçi Üniversitesi Matematik Konuşmaları

High frequency asymptotic of the Kirchhoff amplitude for convex obstacles

Souaad Lazergui
University of Mostaganem, Cezayir

In this talk, we are concerned with diffraction of waves around a strictly convex obstacle. Our objective is to produce the high frequency asymptotic expansion of the amplitude of the Helmholtz equation solution. The original expansions were obtained using a pseudo-differential decomposition of the Dirichlet to Neumann operator DtN. In our work, we use first and second order approximations of the DtN operator so as to derive new asymptotic expressions of the normal derivative of the total field. The resulting expansions can be used to appropriately choose the ansatz in the design of high-frequency numerical solvers, such as those based on integral equations, in order to produce more accurate approximation of the solutions of the Halmhotz equation around the shadow and the deep shadow regions than the ones based on the usual ansatz. Joint with: Yassine Boubendir from NJIT, USA.
Diferansiyel Denklemler İngilizce
TB 130

admin 20.03.2020

Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER


©2013-2020 turkmath.org
Tüm hakları saklıdır