# turkmath.org

Türkiye'deki Matematiksel Etkinlikler

11 Mayıs 2017, 15:00

### Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü Seminerleri

Handan Yıldırım
İstanbul Üniversitesi, Türkiye

It is known that a geodesic in the Poincar ́e disk is a circle which is perpendicular to the ideal boundary (i.e., unit circle). If we adopt geodesics as lines in the Poincar ́e disk, we have the model of Hyperbolic geometry. We have another class of curves in the Poincar ́e disk which has an analogous property with lines in the Euclidean plane. A horocycle is a circle which is tangent to the ideal boundary. We note that a line in the Euclidean plane can be considered as the limit of the circles when the radius tends to infinity. In the same manner, a horocycle is also a curve which can be considered as the limit of the circles in the Poincar ́e disk when the radius tends to infinity. Hence, horocycles are also an analogous notion of lines. If we adopt horocycles as lines, what kind of geometry do we obtain? We say that two horocycles are parallel if they have common tangent point at the ideal boundary. Under this definition, the parallel axiom is satisfied. However, for any two fixed points in the Poincar ́e disk, there exist always two horocycles passing through these points, so that the first axiom of Euclidean geometry is not satisfied. In the case of general dimensions, this geometry is said to be horospherical geometry. On the other hand, we have another kind of curves in the Poincar ́e disk which has similar properties with Euclidean lines. An equidistant curve is a circle whose intersection with the ideal boundary consists of two points. Generally, the angle between an equidistant curve and the ideal boundary is φ ∈ (0, π/2]. Here, we emphasize that a geodesic is an equidistant curve with φ = π/2. However, a horocycle is not an equidistant curve, but it is a circle with φ = 0. We call the geometry where φ = π/2 vertical geometry and the geometry where φ = 0 horizontal geometry. And also we call the family of geometry depending on φ slant geometry. In this talk, I will give some of recent results about this geometry including joint works with Mikuri Asayama, Shyuichi Izumiya and Aiko Tamaoki.
Geometri İngilizce
Seminar room, Bomonti Campus, MSGSÜ

## İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

## DESTEK VERENLER 31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.