turkmath.org

Türkiye'deki Matematiksel Etkinlikler


05 Nisan 2022, 14:00


Bahçeşehir Üniversitesi Analiz ve Uygulamalı Matematik Seminerleri

Some measures of noncompactness and their applications

Eberhard Malkowsky
Department of Mathematics, State University of Novi Pazar, Serbia, Sırbistan

Measures of noncompactness are very useful tools in functional analysis, for in-stance in metric fixed point theory and the theory of operator equations in Banach spaces. They are also used in the studies of functional equations, ordinary and partial differential equations, fractional partial differential equations, integral and integro-differential equa-tions, optimal control theory, and in the characterizations of compact operators between Ba-nach spaces. We present an axiomatic introduction to measures of noncompactness on bounded subsets of complete metric spaces [6, 4, 5, 3], and also the alternative axiomatic approaches by Banaś and Goebel [2] and by Akhmerov et al. [1] for measures of noncompact-ness in Banach spaces. As examples, we consider the Kuratowski, Hausdorff and separation measures of noncompactness and their most important properties. The Kuratowski measure of noncompactness is used in Darbo’s fixed point theorem. Furthermore we study the notion of measures of noncompactness of operators between Banach spaces and some of their prop-erties. Finally we give a few applications to the characterization of compact linear operators between certain BK spaces and to some results concerning the solvability of integral equa-tions.
References:
[1] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, and B.N. Sadovskii. Measures of Noncompactness and Condensing Operators. Birkhäuser Verlag, Basel, 1992.
- 2 -
[2] J. Banaś and K. Goebel. Measures of Noncompactness in Banach Spaces, volume 60 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc., New York and Basel, 1980.
[3] B. de Malafosse, E. Malkowsky, and V. Rakočević. Operators Between Sequence Spaces and Applications. Springer, 2021.
[4] E. Malkowsky and V. Rakočević. An introduction into the theory of sequence spaces and measures of noncompactness, volume 9(17) of Zbornik radova, Matematčki in-stitut SANU, pages 143–234. Mathematical Institute of SANU, Belgrade, 2000.
[5] E. Malkowsky and V. Rakočević. Advanced Functional Analysis. Taylor and Francis, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487, USA, 2019.
[6] J.M. Ayerbe Toledano, T. Dominguez Benavides, and G. Lopez Acedo. Measures of Noncompactness in Metric Fixed Point Theory, volume 99 of Operator Theory Ad-vances and Applications. Birkhäuser Verlag, Basel, Boston, Berlin, 1997.

Uygulamalı Matematik İngilizce
https://us02web.zoom.us/j/6678270445?pwd=SFNmQUIvT0tRaHlDaVYrN3l5bzJVQT09
Ek Dosya
İlgili Web Bağlantısı

bsehir 30.03.2022

Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER


©2013-2022 turkmath.org
Tüm hakları saklıdır