turkmath.org

Türkiye'deki Matematiksel Etkinlikler


28 Mayıs 2021, 16:00


Yeditepe Üniversitesi Matematik Bölümü 25. Yıl Seminerleri

Dual Baer Criterion and R-projectivity of injective modules

Engin Büyükaşık
İzmir Institute of Technology, Türkiye

Let RRR be a ring with unity and Mod-RRR be the category of right RRR-modules. The Baer's Criterion for injectivity states that a right module MMM is injective iff it is RRR-injective, that is for each right ideal III of RRR, any homomorphism from III into MMM extends to RRR. Dually, a right module PPP is RRR-projective if for each right ideal III of RRR any homomorphism from MMM into R/IR/IR/I lifts to RRR. Unlike the case for injectivity, RRR-projective modules need not be projective. That is, the Dual Baer Criterion (DBC, for short) does not hold over every ring. The rings RRR for which the DBC holds in Mod-RRR are called right testing. From [4], it is known that right perfect rings are right testing. In [3], Faith stated the characterization of all right testing rings as an open problem. Recently in [6], Trlifaj proved that the problem of characterizing right testing rings is undecidable in ZFC.

In this talk, after summarizing the aforementioned results, I will mention an extend of the notion of RRR-projectivity, and discuss some problems related to the rings whose injective right modules are RRR-projective which are partially solved in [1].

References

[1] Y. Alagöz and E. Büyükaşık, Max-projective modules, J. Algebra Appl. 20 (2021), no. 6. 2150095.

[2] H. Alhilali, Y. Ibrahim, G. Puninski, and M. Yousif, When R is a testing module for projectivity? J. Algebra 484 (2017), 198-206.

[3] C. Faith, Algebra. II, Springer-Verlag, Berlin-New York, 1976. Ring theory, Grundlehren der Mathematischen Wissenschaften, No. 191. [4] F .L. Sandomierski, Relative injectivity and projectivity, 1964. Thesis (Ph.D.) The Pennsylvania State University.

[5] J. Trlifaj, Whitehead test modules, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1521-1554.

[6] J. Trlifaj, Faith’s problem on R-projectivity is undecidable, Proc. Amer. Math. Soc. 147 (2019), no. 2, 497-504.

[7] J. Trlifaj, The dual Baer Criterion for non-perfect rings, Forum Math. 32 (2020), no. 3, 663-672.


NOT: Please contact the organizer for the seminar link.

Matematik İngilizce
Zoom

7tepe 27.05.2021

Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER


©2013-2020 turkmath.org
Tüm hakları saklıdır