# turkmath.org

Türkiye'deki Matematiksel Etkinlikler

04 Mayıs 2017, 15:00

### Mimar Sinan Güzel Sanatlar Üniversitesi Matematik Bölümü Seminerleri

Giorgos Kapetanakis
Sabancı University, Türkiye

Let $F_q$ be the finite field of cardinality $q$ and $F_{q^n}$ its extension of degree $n$, where $q$ is a prime power and $n$ is a positive integer. A generator of the multiplicative group $F_{q^n}^*$ is called primitive. Besides their theoretical interest, primitive elements of finite fields are widely used in various applications, including cryptographic schemes, such as the Diffieellman key exchange. An $F_{q}$-normal basis of $F_{q^n}$ is an $F_{q}$-basis of $F_{q^n}$ of the form $\{x, x^q, . . . , x^{q^{n−1}}\}$ and the element $x\in F_{q^n}$ is called normal over $F_{q}$. These bases bear computational advantages for finite field arithmetic, so they have numerous applications, mostly found in coding theory and cryptography. An element of $F_{q^n}$ that is simultaneously normal over $F_{q^l}$ for all $l|n$ is called completely normal over $F_{q}$. It is well-known that primitive and normal elements exist for every $q$ and $n$. The existence of elements that are simultaneously primitive and normal is also well-known for every $q$ and $n$. Further, it is also known that for all q and n there exist completely normal elements of $F_{q^n}$ over $F_{q}$. Morgan and Mullen [Util. Math., 49:21–43, 1996], took the next step and conjectured that for any $q$ and $n$, there exists a primitive completely normal element of $F_{q^n}$ over $F_{q}$. In order to support their claim, they provided examples for such elements for all pairs $(q, n)$ with $q\leq 97$ and $q^n < 10^{50}$. This conjecture is yet to be established for arbitrary $q$ and $n$, but instead we have partial results, covering special types of extensions. Recently, Hachenberger [Des. Codes Cryptogr., 80(3):577– 586, 2016] using elementary methods, proved the validity of the Morgan-Mullen conjecture for $q\leq n^3$ and $n\geq 37$. In this work, we use character sum techniques and prove the validity of the Morgan-Mullen conjecture for all $q$ and $n$, provided that \$q > n4. In the talk, the previous results will briefly be presented, our proof will be outlined and possible improvements will be discussed.
Cebir İngilizce
Seminar room, Bomonti Campus, MSGSÜ

admin 20.03.2020

## İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

## DESTEK VERENLER

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

## ONLİNE ZİYARETÇİLER

©2013-2023 turkmath.org
Tüm hakları saklıdır