turkmath.org

Türkiye'deki Matematiksel Etkinlikler


03 Haziran 2022, 14:00


Gebze Teknik Üniversitesi Matematik Bölümü Genel Seminerleri

A Numerical Method for Source Identification Problem Related to Dynamical Kirchoff Plate Equation

Onur Baysal
University of Malta, Malta

Large Kirchoff Plate model is an integral part of most engineering fields including plate and shell structures [1]. In [2], some important identification problems are stated and some properties are analyzed such as stability and uniqueness. In this work we study the inverse problem of identifying the unknown load distribution $f(x, y)$ in the rectangular domain $\Omega:=(0, k) \times(0, l)$ such that

$u_{t t}+D \Delta^{2} u=g(t) f(x, y) \; \text{ in } \; \Omega_{t}:=\Omega \times(0, T)$ 

$u(x, y, 0)=0, u_{t}(x, y, 0)=0, \; \text{ for } \; (x, y) \in \Omega$, 

$u=0, \partial_{n}=0, \; \text{ on } \; \overline{\partial \Omega_{i}} \times[0, T], \; \text{ for } \; i=1,2,3,4,$ 

$u=0,-D\left(v u_{x x}+u_{y y}\right)=0 \; \text{ on } \; \partial \Omega_{1} \times[0, T]$ .

 

Here $u(x, y, t)$ or $(u(x, y, t ; f))$ is the displacement at a point $(x, y) \in \bar{\Omega}$ and a time $t \in$ $[0, T], \partial_{n} u$ denotes the normal derivative of $u, g \in L^{2}(0, T)$ is the (known) temporal load, $D:=$ $E /\left(1-v^{2}\right)$ is the bending stiffness, $v \in(0,1)$ is the Poisson's ratio, $E$ is the elasticity modulus and $\partial \Omega=\sum_{i=1}^{4} \partial \Omega_{i}$ where

 

$\partial \Omega_{1}=(0, k) \times\{0\}, \partial \Omega_{2}=\{k\} \times(0, l), \partial \Omega_{3}=(0, k) \times\{l\}, \partial \Omega_{4}=\{0\} \times(0, l).$

 

In determination of $f$ we have the following boundary observation on $\overline{\partial \Omega_{1}}$ :

 

$\theta(x, t):=u_{y}(x, 0, t)  \text{, for } \; x \in[0, l], t \in[0, T]$

 

The conjugate gradient algorithm (CGA) is designed for the numerical solution of the identification problem. The proposed approach is based on weak solution theory for PDEs, Tikhonov regularization combined with the adjoint method. Computational results, obtained for noisy output data, are illustrated to show an efficiency and accuracy of the proposed approach, for typical classes of source functions.

References

1.L. Fryba, Vibrations of the Solids and Structures under Moving Loads, Thomas Telford Publishing House, 1999. 

2.M. Yamamoto, Determination of forces in vibrations of beams and plates by point wise and line observations, J. Inv. Ill-Posed Problems, Vol.4, No.5, pp.437-457 1996.

Link to the seminar is:

https://teams.microsoft.com/l/meetup-join/19%3a0ae91f7b86a24e8fa1d818a6f74b22a1%40thread.tacv2/1653904979472?context=%7b%22Tid%22%3a%22066690f2-a8a6-4889-852e-124371dcbd6f%22%2c%22Oid%22%3a%22a343f6fd-86f8-4abe-95cf-3c7f4ad5f0ca%22%7d

Kısmi Diferansiyel Denklemler İngilizce
Microsoft Teams

gtumatematik 31.05.2022

Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER


©2013-2022 turkmath.org
Tüm hakları saklıdır