turkmath.org

Türkiye'deki Matematiksel Etkinlikler


25 Nisan 2019, 13:40


Sabancı Üniversitesi Cebir Seminerleri

The line and the translate problems for r-primitive elements

Giorgos Kapetanakis
University of Crete, Yunanistan

Let q be a prime power and n ≥ 2 an integer. We denote by F_q the finite field of q elements and by F_ {q^n} its extension of degree n. An element of F^∗_{q^n} of order (q^n−1)/r, where r | q^n−1, is called r-primitive, while, if r = 1, we simply call it primitive. If θ is a generator of the extension F_{q^n} /F_q, i.e., is such that F_ {q^n} = F_q(θ), then T_θ := {θ + x : x ∈ F_q} is the set of translates of θ over Fq and, if α ∈ F^∗_{q^n} , L_{α,θ} := {α(θ + x) : x ∈ F_q} is the line of α and θ over F_q. It is known that, given n, if q is large enough, every set of translates and every line contain a primitive element, while effective versions for these existence results are known for just a few small values of n. In this work, we extend these existence results to r-primitive elements and we provide effective results for the case r = n = 2. This work is still in progress and is in collaboration with Stephen D. Cohen.
Cebir İngilizce
FENS G035

admin 20.03.2020

Yaklaşan Seminerler Seminer Arşivi
 

İLETİŞİM

Akademik biriminizin ya da çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.

Özkan Değer ozkandeger@gmail.com

DESTEK VERENLER

ja2019

31. Journees Arithmetiques Konferansı Organizasyon Komitesi

Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.

ONLİNE ZİYARETÇİLER


©2013-2020 turkmath.org
Tüm hakları saklıdır