Galatasaray University Mathematics Department Seminars

Techniques for computing the Igusa local zeta function of some plain curves
Denis Ibadula
Ovidius University-Constanta, Romania
Özet : The Igusa local zeta function is a generating function which counts, for a fixed prime number p, the number of solutions of polynomial congruence f(x) ≡ 0 modulo p, p2, p3, and so on. Naturally, such a quantity bears deep relations to other important mathematical ideas from number theory, algebraic geometry and singularities theory. In this work we explore some computational aspects of the Igusa local zeta function associated to the nondegenerate plane cubics over ℚp for p≠ 2,3.
  Tarih : 15.03.2017
  Saat : 15:00
  Yer : Galatasaray Üniversitesi, FEF10 salonu
  Dil : English
    Yazdır