Türkiye'deki Matematiksel Etkinlikler
David Ayala
Montana State University, Amerika Birleşik Devletleri
The "alpha" version of factorization homology pairs (framed) $n$-manifolds with $E_n$-algebras. This construction generalizes classical homology of a manifold, yields novel results concerning configuration spaces of points in a manifold, and supplies a sort of state-sum model for sigma-models (ie, mapping spaces) to
$(n-1)$-connected targets. This "alpha" version of factorization homology novelly extends Poincaré duality, shedding light on deformation theory and dualities among field theories. Being defined using homotopical mathematical foundations, "alpha" factorization homology is manifestly functorial and continuous in all arguments, notably in moduli of manifolds and embeddings between them, and it satisfies a local-to-global expression that is inherently homotopical in nature.
Now, $E_n$-algebras can be characterized as $(\infty,n)$-categories equipped with an $(n-1)$-connected functor from a point. The (full) "beta" version of factorization homology pairs (framed) $n$-manifolds with pointed $(\infty,n)$-categories (with adjoints). Applying $0$th homology, or $\pi_0$, recovers a version of the String Net construction of surfaces, as well as of Skein modules of $3$-manifolds. In some sense, the inherently homotopical nature of (full) "beta" factorization homology affords otherwise unforeseen continuity in all arguments, and local-to-global expressions.
In this talk, I will outline a definition of "beta" factorization homology, focusing on low-dimensions and on suitably
reduced $(\infty,n)$-categories (specifically, braided monoidal categories). I will outline some examples, and demonstrate some operational practice of factorization homology. Some of this material is established in literature, some a work in progress, and some conjectural — the status of each assertion will be made clear. I will be especially interested in targeting this talk wot those present, and so will welcome comments and questions.
All of this work is joint with John Francis.
Zoom uygulaması Bilim Akademisi tarafından sağlanmaktadır./Zoom link is provided by The Science Academy.
Akademik biriminizin veya çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.