Türkiye'deki Matematiksel Etkinlikler
Umut Varolgüneş
Koç Üniversitesi, Türkiye
Consider a particle moving in Euclidean space under the influence of a Hamiltonian energy function. All possible trajectories of this particle define a flow on the phase space $R^2 \times \dots \times R^2$, where we paired each position coordinate with its corresponding momentum coordinate. One can assign to each (oriented) patch of surface in the phase space its symplectic area: add up the signed areas of the projections to each $R^2$ factor. The birth of symplectic geometry is the observation that any Hamiltonian flow preserves these symplectic areas. A symplectic manifold is a generalization of this phase space structure to spaces with more interesting topology, e.g. on a three holed torus a symplectic structure is equivalent to an area form. I will outline some recent results (including some of mine) in symplectic geometry, restricting myself to phase spaces and surfaces.
Akademik biriminizin veya çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.