Türkiye'deki Matematiksel Etkinlikler
Andrew Sutherland
MIT, Amerika Birleşik Devletleri
Let A be an abelian variety of dimension g defined over a number field K. As defined by Serre, the Sato-Tate group ST(A) is a compact subgroup of the unitary symplectic group USp(2g) equipped with a map that sends each Frobenius element of the absolute Galois group of K at primes p of good reduction for A to a conjugacy class of ST(A) whose characteristic polynomial is determined by the zeta function of the reduction of A at p. Under a set of axioms proposed by Serre that are known to hold for g <= 3, up to conjugacy in Usp(2g) there is a finite list of possible Sato-Tate groups that can arise for abelian varieties of dimension g over number fields. Under the Sato-Tate conjecture (which is known for g=1 when K has degree 1 or 2), the asymptotic distribution of normalized Frobenius elements is controlled by the Haar measure of the Sato-Tate group.
In this talk I will present a complete classification of the Sato-Tate groups that can and do arise for g <= 3.
This is joint work with Francesc Fite and Kiran Kedlaya.
Akademik biriminizin veya çalışma grubunuzun ülkemizde gerçekleşen etkinliklerini, ilan etmek istediğiniz burs, ödül, akademik iş imkanlarını veya konuk ettiğiniz matematikçileri basit bir veri girişi ile kolayca turkmath.org sitesinde ücretsiz duyurabilirsiniz. Sisteme giriş yapmak için gerekli bilgileri almak ya da görüş ve önerilerinizi bildirmek için iletişime geçmekten çekinmeyiniz. Katkı verenler listesi için tıklayınız.
Özkan Değer ozkandeger@gmail.com
31. Journees Arithmetiques Konferansı Organizasyon Komitesi
Web sitesinin masraflarının karşılanması ve hizmetine devam edebilmesi için siz de bağış yapmak, sponsor olmak veya reklam vermek için lütfen iletişime geçiniz.